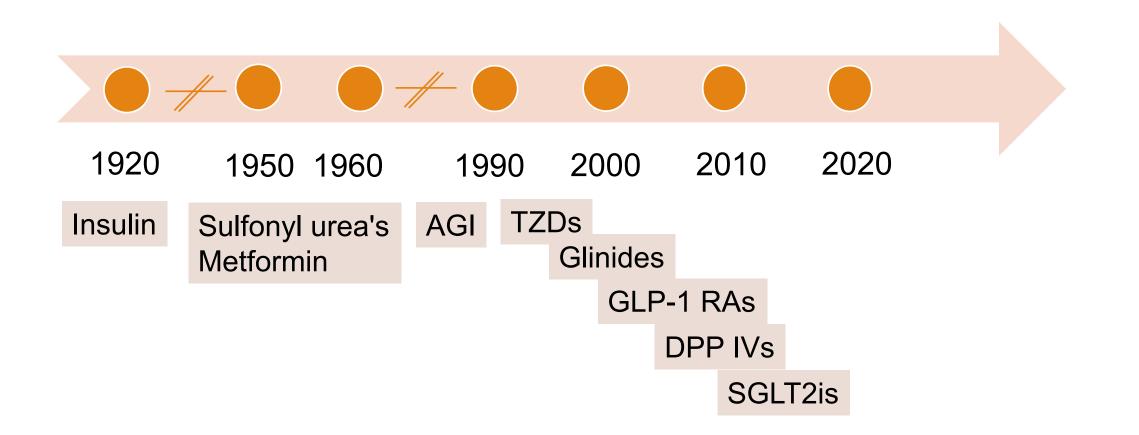
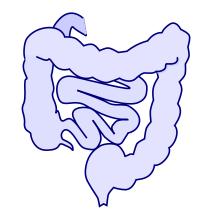
Advances in Antidiabetic Pharmacotherapy: Focus on SGLT2-Inhibitors

Raghu Yendapally, BPharm, PhD, MBA Feik School of Pharmacy, University of the Incarnate Word


Learning Objectives

Describe the structural aspects of SGLT inhibitors.

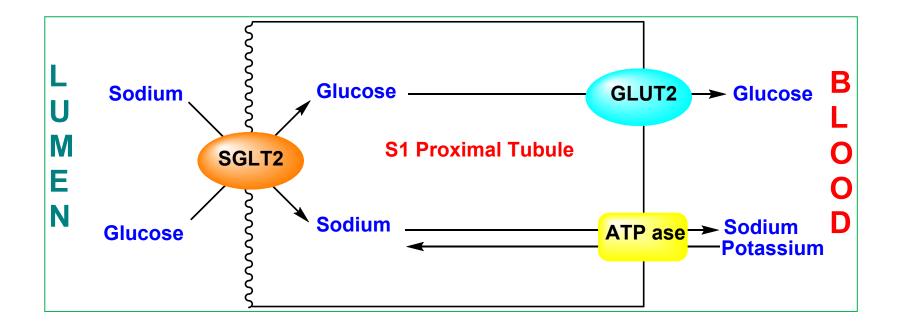
Explain the mechanism of action of SGLT2 and dual SGLT1/2 inhibitors.


Describe the adverse effects and warnings associated with SGLT inhibitors.


Timeline Antidiabetic Drugs

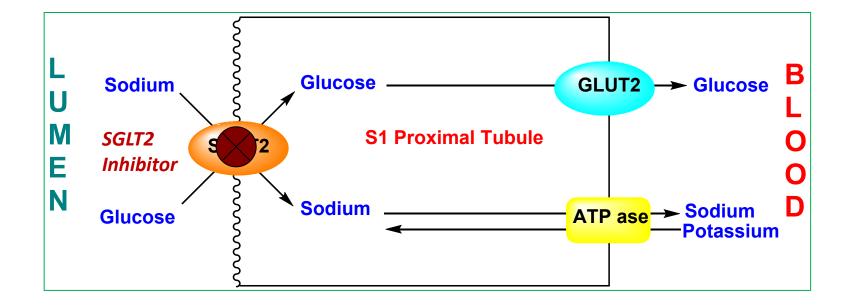
Scheen AJ. Clinical pharmacology of antidiabetic drugs: what can be expected of their use? Presse Med. 2022;52(1):104158.

What are Sodium-glucose cotransporters (SGLTs)?



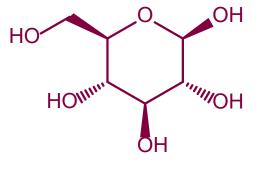
SGLT1	SGLT2
 Mostly small intestine Some in the late proximal straight tubule (S3 segment) of kidney 	 Almost in Kidneys Early proximal convoluted tubule (S1 segment)
~10% of renal glucose reabsorption	~90% of renal glucose reabsorption

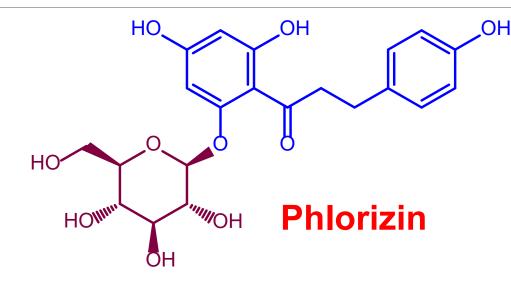
Chao, E., Henry, R. SGLT2 inhibition — a novel strategy for diabetes treatment. Nat Rev Drug Discov 9, 551–559 (2010).


What is the function of SGLT2?

Chao, E., Henry, R. SGLT2 inhibition — a novel strategy for diabetes treatment. Nat Rev Drug Discov 9, 551–559 (2010).

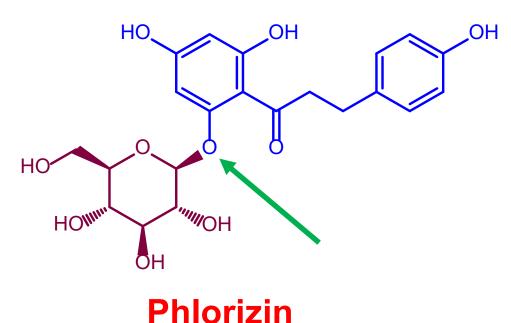
How do SGLT2-Inhibitors work? MOA


- Mechanism of Action
 - Reduces reabsorption of glucose from the tubular lumen


Sodium–glucose cotransporter 2 (SGLT2) inhibitors

- Referred as gliflozins
- FDA-approved drugs: Few including canagliflozin, dapagliflozin, and empagliflozin
 - Please refer to the specific drug labels at the Drugs@FDA: FDA-Approved Drugs <u>https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm</u>
- Outside the US: Many other drugs

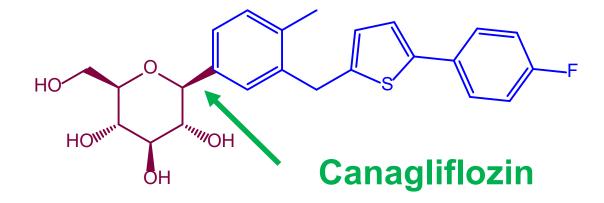
Discovery of SGLT Inhibitors



Beta-D-glucose

- Chemical structure
 - consists of a glucose sugar
 - substituted group attached to the β-position of the anomeric carbon

Discovery of SGLT Inhibitors

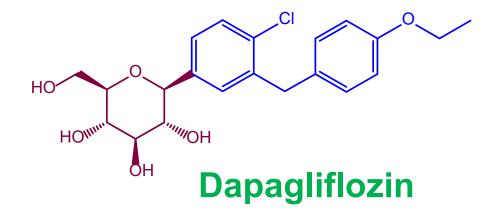

- O-glucose derivative/O-glycoside
 - Isolated in 1835 from apple tree bark
- Dual SGLT inhibitor

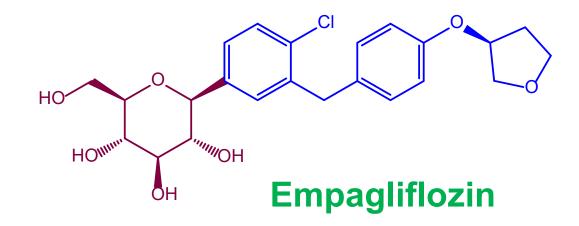
Inhibits both SGLT1 (IC₅₀ 330nm) and SGLT2 (IC₅₀ 36nm)

- Produce renal glycosuria and block intestinal glucose absorption
- Poor bioavailability

Unstable due to hydrolysis of the O glycosidic bond

Discovery of SGLT Inhibitors

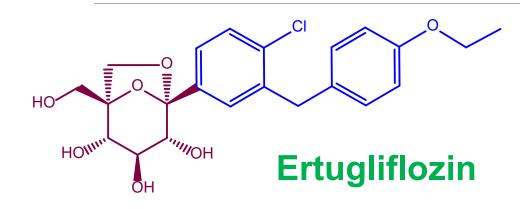



- □ U.S. Approval: 2013 for T2DM
- □ The first clinical C-glycosyl compound. Followed by several....

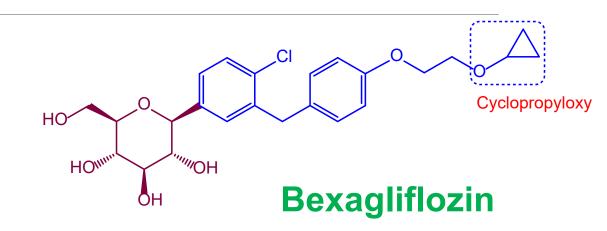
https://pubchem.ncbi.nlm.nih.gov/compound/Canagliflozin

https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/204042s041s042lbl.pdf

SGLT2 Inhibitors


- □ U.S. Approval: 2014 for T2DM
- US approval June 2024 for T2DM pediatric patients aged 10 years and older

https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/202293s031lbl.pdf https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/204629s040lbl.pdf □ U.S. Approval: 2014 for T2DM


Pharmacokinetics

	Canagliflozin	Dapagliflozin	Empagliflozin
Bioavailability	~65%	~78%	86%
Protein binding	99%	91%	86%
Metabolism	O-glucuronidation	O-glucuronidation	O-glucuronidation
t _{1/2} elimination	~10-13 hours	~10-13 hours	~12.4 hours

SGLT2 Inhibitors

- □ U.S. Approval: 2017 for T2DM
- □ Protein binding: 93%
- Metabolism: O-glucuronide
- **\Box** t_{1/2} elimination: 16.6 hours

- □ U.S. Approval: 2023 for T2DM
- Protein binding: 93%
- Metabolism: O-glucuronide
- $t_{1/2}$ elimination: 12 hours

Dual SGLT inhibitor

- □ U.S. Approval: 2023 for HF
- Dual SGLT inhibitor (intestinal SGLT-1 and renal SGLT inhibitor)
- □ Protein binding: 93%
- □ Metabolism: O-glucuronide metabolite
- **u** $t_{1/2}$ elimination: 21 to 35 hours

Benefits of SGLT2-Inhibitors

- Oral medication
- Low risk of hypoglycemia
- Lowers blood pressure
- Weight loss
- Cardiovascular benefits

Current Status of SGLT2-Inhibitors

- Cardiovascular
 - □ Phase 3: Balcinrenone/dapagliflozin: heart failure with CKD
 - Phase 2: Sotagliflozin: hypertrophic cardiomyopathy
- **Type 1 Diabetes**: Phase 3 -Sotagliflozin: FDA declined in 2019, resubmitted 2024
- Renal Indication CKD
 - Phase 2: aldosterone synthase inhibitor + empagliflozin ; Albuminuria reductions by up to 39.5%- Additive efficacy?

Side Effects and Precautions of SGLT2-Inhibitors

- Genital and Urinary Tract Infections
- Hypotension
- Polyuria
- Dehydration
- Renal Impairment: Monitor renal function
- Risk of DKA (FDA warning in May 2015)

Conclusions

- Novel Mechanism of Action
- SGLT inhibitors have shown good results in the treatment of type 2 diabetes and beyond
- Beneficial effects for other diseases such as heart failure
- Greater potential for this class of drugs in the future

References

1.AstraZeneca <u>https://www.astrazeneca.com/our-therapy-areas/pipeline.html#cvrm</u>

2.Boehringer Ingelheim <u>https://www.boehringer-ingelheim.com/human-health/chronic-kidney-disease/promising-phase-ii-results-</u> <u>chronic-kidney-disease</u>

3. Chao, E., Henry, R. SGLT2 inhibition — a novel strategy for diabetes treatment. Nat Rev Drug Discov 9, 551–559 (2010).

4.Drugs@FDA: FDA-Approved Drugs <u>https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm</u>

5.Jackson EK. Drugs Affecting Renal Excretory Function. In: Brunton LL, Knollmann BC. eds. Goodman & Gilman's: The Pharmacological Basis of Therapeutics, 14th Edition. McGraw-Hill Education; 2023.

6.Lexicon Pharmaceuticals <u>https://www.lexpharma.com/pipeline</u>

7.PubChem https://pubchem.ncbi.nlm.nih.gov/compound/Canagliflozin

8.Ramani J, Shah H, Vyas VK, Sharma M. A review on the medicinal chemistry of sodium glucose co-transporter 2 inhibitors (SGLT2-I): Update from 2010 to present. European Journal of Medicinal Chemistry Reports. 2022/12/01/ 2022;6:100074. <u>https://doi.org/10.1016/j.ejmcr.2022.100074</u>

9. Scheen AJ. Clinical pharmacology of antidiabetic drugs: what can be expected of their use? Presse Med. 2022;52(1):104158

10.Zurek AM, Yendapally R, Urteaga EM. A Review of the Efficacy and Safety of Sodium–Glucose Cotransporter 2 Inhibitors: A Focus on Diabetic Ketoacidosis. Diabetes Spectrum. 2017;30(2):137-142.

